Fast and Adaptive BP-based Multi-core
Implementation for Stereo Matching

Armin Ahmadzadeh, Hatef Madani, Kianoush Jafari, Farzad Salimi Jazi, Shervin Daneshpajouh, Saeid Gorgin

School of Computer Science,
Institute for Research in Fundamental Sciences (IPM),
Tehran, Iran
Email: {gorgin,daneshpajouh} @ipm.ir

Abstract—The stereo matching problem has been under atten-
tion of numerous researchers for many years, due to the wide
range of applications in computer vision. The MEMOCODE 2013
design contest was aimed to develop a very fast and efficient
stereo matching method to infer the depth information for each
pixel of a pair stereo image via Belief Propagation on Markov
Random Field graph. We first explored different platforms, i.e.
FPGA, GPU, multi-core CPU, to find the best one for solving the
contest problem. Based on our investigation, we select multi-core
system and design and implement a solution on this platform.
We use a series of techniques and optimization methods to
improve the running time of the stereo matching problem while
preserving the error compared to the given reference solution.
Our method outperform other team’s solutions in both classes:
absolute-performance and cost-adjusted-performance.

I. INTRODUCTION

Stereo matching is one of the important components of the
computer vision. It is a label-assignment problem to infer
the depth information of 2D images by relying on parallax
effect phenomena. It simply expresses that closer objects move
quicker than those further away; that is the pixels in the closer
objects have greater amount of disparity than the other one [1].
In this problem, we are given a pair of left and right images
which are taken from slightly different horizontal views. The
goal of stereo matching is to label the depth information by
processing these two images. The output of the algorithm is
a grayscale image in which every pixels with the same depth
have the same color; the closest ones are white and the furthest
are black.

It is proven that the Label-assignment problem is
NP-hard [5]. There exist some approximation methods that
model this problem using Markov Random Field (MRF). The
MRF graph can be solved by global energy minimization
algorithms such as Belief Propagation (BP) or graph-cuts.
Although these algorithms grantee the approximation factor,
their running time and memory requirements are too high for
real world applications. The subject of MEMOCODE 2013
hardware/software co-design contest is stereo matching using
belief propagation (BP) algorithm [1]. Belief Propagation is
a message passing algorithm that was originally used for
acyclic graphs [2], which returns the exact result of energy
minimization. It can also be used for loopy graphs, known as
Loopy Belief Propagation (LBP), and it has been successfully

978-1-4799-0905-6/13/$31.00 ©2013 IEEE

applied to many problem domains such as early vision [3],
(41, [5].

In each iteration of BP algorithm, it propagate messages
between adjacent nodes of MRF graph using an updating
schema. There are two main variant of update schema: BP-M
and BP-S [4]. In BP-M each node updates its adjacent nodes
with highest belief in four different directions (left, right, up,
and down). This update formula is shown in the following
equation.

m;aq(fq):Ir}in(v(fp_fq)+Dp(fp)+ Z millp(fp))

seN(p)\q

The other updating schema is BP-S which is derived form
the TRWS [6]. The most important difference between BP-M
and BP-S is their updating schedules for passing messages on
grid. In BP-S messages are passed in forward and backward
manner. In forward pass, each message can move in right and
down till reaches to the last nodes. In backward pass, each
message can move to the left and up till it reaches to the first
node. See [4], [7], [8] for more detailed description of LBPs.
Also, the BP-S schema is less accurate than BP-M [4], [9] and
it is absolutely sequential that make it difficult for hardware
parallelism.

In this contest, we chose multi-core CPU over GPU and
FPGA. The data transfer between CPU and GPU is too high
compared to the total running time of the algorithm on a
multi-core system. Note that there is also another bandwidth
bottleneck for accessing data on GPU’s global memory by its
cores. Also, for FPGA, not only it has data transfer limitations,
but also, it is hard to place the whole design on the FPGA
hardware.

The rest of paper is organized as follows: Section II presents
a detailed description of the contest problem. We introduce
our method which is the all-around winner of this year design
contest in two sections: Section III shows optimization tech-
niques and Section IV presents the implementation method.
In Section V, we review the detailed information of our
hardware platforms and present the experimental results for
both benchmark images: Tsukuba and Barrels. Finally, we
conclude in Section VI.

135

II. PROBLEM DESCRIPTION

As mentioned in the introduction section, this year’s contest
is about stereo matching problem with the aim of developing
a fast and efficient BP-based optimization algorithm on MRF
graph within the duration of one month. The most time-
consuming part of the MRF-based solutions is its optimization
section. The MRF graph is a grid of pixel-pair data as nodes,
and consist of two parts: (1) Data part, (2) Messages part. Data
part is initiated via input file that contains disparity values
of each pixel. Messages part consists of message values of
each node (Initially, these values are set to be zero). The goal
is to output the disparity map, that is to identify the depth
information by assigning a label to each node. The accuracy of
the algorithm is defined as the number of mismatched labels
between output of the algorithm and the provided reference
code. The proposed algorithm should have the same or better
accuracy than the standard BP on the reference data sets.

The BP algorithm needs some iterations till it converge. As
an example, in the case of the Tsukuba dataset, it takes 40
iteration to converge. The time complexity of BP-M message
construction is O(k?) where k is the number of labels. So, the
total running time of the optimization algorithm is O(t.n.k?)
where ¢ is the number of the iterations and n is the number
of nodes. Although BP-M is a popular method due to its
simplicity and regularity, it has its own weaknesses. The
amount of memory used by BP-M is at least 5-times larger
than the input data. This issue not only makes the cache
utilization difficult, but also causes some challenges to apply
BP-M method to devices with limited memory.

III. OPTIMIZATION TECHNIQUES

In this section, we present a set of optimization techniques
employed or tailored for our problem in order to reduce the
running time (CPU wall time) of the naive BP algorithm.

A. Min-convolution

The time complexity of traditional BP algorithm is O(k?).
We employ the min-convolution algorithm presented in [5] to
reduce the complexity down to O(k). In this method, message
labels are computed in two linear passes; forward pass and
backward pass.

The forward pass is:

for f, from 1 to k —1,
m(fq) < min(m(fy), m(fr — 1) + ¢),

and backward path is:

for f, from k — 2 downto 0
m(fy) < min(m(fy), m(fr +1) +¢)

For detailed description of this method see [5].

Fig. 1: Flow of bi-direct message passing. Circles represent
two neighboring nodes of MRF grid (p,q). The message are
passed to edges E; of each node which are represented by
rectangles. D demonstrates data part. The arrows represent
the flow of bi-direct message passing, where dashed and solid
ones represent the right-to-left and left-to-right, respectively.

B. Hierarchy of vertices

In large images, LBP needs large number of iterations to
stabilize the messages between distant nodes. The number of
iterations can be reduced using Hierarchical BP method of [5].
In fact, in this method the length of message passing between
two distant nodes are reduced. Therefore, we employ [5]
method and tailor it by reducing hierarchies into only two
layers: coarse and fine. Fine-layer consists of MRF data and
coarse-layer consists of MRF messages. Our experiments show
that for the VGA image size having only two layers are
sufficient. We compress the fine-layer data and send it to
the coarse-layer. We perform the BP algorithm on the coarse-
layer. Also, we need to transfer data of some specific nodes to
the other one in the upper layer. Therefore, a specific mixing
method is required. Following is our mixing equation.

where DLi represent data of n'" vertex number in layer L;, s
is the scaling factor of corresponding nodes in the fine layer
and df is the division factor between 1 and 2 (e.g. df = 1
gives us sum of all nodes in the fine layer).

C. Bipartite method

We use bipartite method that splits main MRF nodes into
two odd and even subsets [S5], [12]. We observed that by
skipping one subset in each iteration, the performance and ac-
curacy improve. Therefore, at each iteration, we only transfer
the messages of the nodes of only one subset.

D. Bidirectional message passing

In traditional BP method, the messages are passed in a
certain direction and then vice versa (e.g. right-to-left, and then
left-to-right). Clearly, there is no data dependency between
these two message passing (See Fig. 1, in which forward
and backward message passing have no data dependency).
Therefore, message passing can be performed across both
directions simultaneously.

136

IV. IMPLEMENTATION METHOD

Our implementation method consists of two parts: Com-
putational and Memory optimizations. Following we explain
these implementations.

A. Computational Optimization

Our computational optimization approaches consists of two
basic parts: (1) We introduce an optimized solution for ini-
tialization of compact layer (coarse-layer) which consists of
two arithmetic operations for each data element. We apply the
operation mentioned in section III-B on the input data which
transfer data to the coarser layer. We have parallelized relevant
operations in order to speed-up the data generation for this
layer. Our approach improves the running time by overlapping
the memory latency and computational tasks. (2) We also
optimize and parallelize message passing in BP algorithm.
Different techniques can be considered to parallelize the BP
message algorithm, depending on the architecture. Potentially,
the algorithm can be parallelized in all four directions. Bi-
direct method reduces these four steps (right, left, up, and
down) to only two steps (row and column). Using this method,
we reduce the number of steps of the algorithm from four
to two, and consequently the computation time. Note that,
the row and column steps cannot be run simultaneously,
as they have data dependency to each other. We combine
the observation that row (column) operations can be done
simultaneously with the bi-direct method in order to fully
utilize CPU cores. Note that, in this case the computational
tasks become coarse grained, which is favourable for CPU
cores. This also decrease the overhead of initializing a thread.
We implemented these techniques using OpenMP API.

B. Memory Optimization

Memory bandwidth limitation still bounds the computa-
tional time. In order to improve the running time, we use two
level of memory optimizations: (1) system level optimization
for data initialization, and (2) Optimizing cache usage by
employing bi-direct method.

We alter MRF data structure to a linear size data structure
that can cover memory latencies with efficient cache usage.
This structure stores input data in a separate vector, thus avoid
loading irrelevant data into cache. We also used compiler
directives to prefetch data from memory efficiently.

Using the bi-direct method, the cache hit ratio increases. In
bi-direct method the left and right (top and down) messages
pass simultaneously. Therefore, in half of updates, memory
access has a minimal latency.

V. OUR RESULTS
In this section, we first overview our hardware platforms
and then present our experimental results on these platforms.

A. Platforms Overview

Here is list of our multi-core platforms.

o Intel Core i5, M460 with two cores @ 2.57GHz.
o Intel Core 17, 960 with four cores @ 2.67GHz.

IIBP our opt.
— [naive BP-M
10t . —
(2]
S
o
®©
@
o o
o
S5
o 4
£
|_
2,
0 Core i5-460M Core i7-960 Xeon X5650
Platforms

Fig. 4: Performance comparison of Config 40-1.

o Intel Xeon x5650 with six core @ 2.67GHz.

The hyper threading feature [13] is enabled in all of these
platforms.

B. Experimental Results

We have experimented our implementation on aforemen-
tioned multi-core platforms on both Tsukuba and Barrels
images. Table I summarize our results. Note that in this table
scale factor is the scaling factor of corresponding nodes in the
fine layer defined in Section III-B.

Our best time for Tsukuba is 0.6us with 13695 mismatch
(Table I-Config 4-8) which is less than 17743 mismatch of the
reference code (See Fig. 2 for the output image comparison).
Also, our best time for Barrels image is 204ms with 11833
(Table I-Config 40-1) which is less than 11870 mismatch of the
reference code (See Fig. 3 for the output image comparison).
Fig. 4 shows the performance comparsion for this config.

VI. CONCLUSION

In this paper, we have proposed a modified version of
BP algorithm that improves the running time while the data
accuracy is preserved. We employed a set of optimization
techniques on multi-core platform in order to provide a faster
and reliable solution. We evaluated our results on different
platforms. Our experiments on Tsukuba test bench data shows
that our method is more than four orders of magnitude faster
than the reference solution.

Our solution is the all-around winner of this year’s MEM-
OCODE design contest.

ACKNOWLEDGMENT

We are grateful to Prof. Hamid Sarbazi Azad, Head of
school of computer science for his various support and useful
guidance. We also would like to acknowledge Soroush Bateni,
Ahmad Lashgar, Mohsen Mahmoudi Aznaveh, Alireza Majidi,
Kamyar Mirzazad, Mehrshad Vosoughi, members of computer
science school at Institute for Research in Fundamental Sci-
ences (IPM) for their helpful discussions and comments.

137

(a)

, (d) Our method’s output with 11367 mismatches.

AN
Y B!

(a)

i -
(b) ©
Lrgsy
(b) (c)

(d)

Fig. 2: (a) Contest reference image. , (b) Tsukuba ground truth image. , (c) The reference code output with 17743 mismatches.

Fig. 3: (a) Contest Barrels image., (b) The reference code output with 11870 mismatches. , (c) Our implementation’s output

with 11833 mismatches.

TABLE I: Comparison of implementations with different configuration on different multi-core platform.

. Scale Mismatch Mismatch Time Req (Xeon Time Req (Core . .
Name Iteration Factor (Tsukuba). (Barrels). X5 620). i7—96qO). Time Req (Core i5-460M).
Refrence Code 40 - 17743 11870 16.7 s 14.7 s 40.5 s
Config 4-8 4 8 13695 17084 0.6 ms 0.8 ms 2.9 ms
Config 4-4 4 4 15047 15348 1.1 ms 1.5 ms 5.9 ms
Config 40-4 40 4 11367 15328 6.3 ms 8.1 ms 40 ms
Config 40-1 40 1 12727 11833 204 ms 277 ms 850 ms
Config 14-1 14 1 17487 13318 73 ms 98 ms 300 ms
Config 20-1 20 1 16333 12570 103 ms 103 ms 426 ms
Config 30-1 30 1 14073 12048 155 ms 139 ms 635 ms
REFERENCES Propagation for Stereo Correspondence, IEEE International Conference

[1

—

Matching. Available at: hitp : //memocode.irisa.fr/2013/.

J. Pearl, probabilistic Reasoning In Intelligent Systems:Networks of

plausible inference, Morgan Kaufmann, (1988).

[3] B. Frey, D. Mackay, A Revolution: Belief Propagation In Graphs With
Cycles, Advances in Neural Information Processing Systems, (1997).

[4] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A.
Agarwala, M. Tappen, C. Rother, A Comparative Study of Energy
Minimization Methods For Markov Random Field with Smoothness-Based
Priors, IEEE Transaction on pattern analysis and machine intelligence,
30(6): 1068-1080 (2008).

[5] P. F. Felzenszwalb and D. P. Huttenlocher Efficient Belief Propagation
for Early Vision, International Journal of Computer Vision 70(1): 41-54
(2006).

[6] M. Wainwright, T. Jaakkola, A. Willsky, Map Estimation Via Agreement
On Trees: Message-passing And Linear Programming, IEEE Transactions
on Information Theory, 51(11) 6697-3717 (2005)

[71 W. Freeman, E. Pasztor, O. Carmichael, Learning Low-Level Vision,
International Journal Of Computer Vision, 40(1): 25-47 (2000).

[8] Loopy belief propagation, Markov Random Field, stereo vision, Available
at: hitp : //nghiaho.com/?page_id = 1366.

[9]1 M. F. Tappen, W. T. Freeman, Comparison of Graph Cuts with Belief
Propagation for Stereo, Using ldentical MRF Parameters, Ninth IEEE
International Conference on Computer Vision. 900-906 (2003).

[10] C. Liang, C. Cheng, Y. Lai, L. Chen, H. Chen, Hardware-Efficient
Belief Propagation, IEEE Transaction On Circuits And Systems For Video
Technology, 21(5): 525-537 (2011).

[11] Y. Tseng, N. Chang, T. Chang Low Memory Cost Block-Based Belief

[2

—

138

on Multimedia and Expo. 1415-1418 (2007)

MEMOCODE 2013 Hardware/Software Co-design Contest: Stereo [12] A. Brunton, C. Shu and G. Roth, Belief Propagation on the GPU

for Stereo Vision, In Proceedings of the 3rd Canadian Conference on
Computer and Robot Vision (CRV’06), IEEE Computer Society, (2006).

[13] Intel Product Information, Available at: http://ark.intel.com.
[14] Middlebury benchmark, Available at:

http : //vision.middlebury.edu/stereo/.

