
Efficient Continuous Skyline Computation on Multi-
Core Processors Based on Manhattan Distance

Ehsan Montahaie, Milad Ghafouri, Saied Rahmani, Hanie Ghasemi, Farzad Sharif Bakhtiar, Rashid Zamanshoar,
Kianoush Jafari, Mohsen Gavahi, Reza Mirzaei, Armin Ahmadzadeh, Saeid Gorgin*

 School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

HPC@ipm.ir

Abstract— The continuous Skyline query has recently become

the subject of the several researches due to its wide spectrum of
applications such as multi-criteria decision making, graph
analysis network, wireless sensor network and data exploration.
In these applications, the datasets are huge and have various
dimensions. Moreover, they constantly change as time passes.
Therefore, this query is considered as a computation intensive
operation that finding the result in a reasonable time is a
challenge. In this paper, we present an efficient parallel
continuous Skyline approach. In our suggested method, the
dataset points are sorted and pruned based on Manhattan
distance. Moreover, we use several optimization methods to
optimize memory usage in comparison with naïve
implementation. In addition, besides the applied conventional
parallelization methods, we partition the time steps based on the
number of available cores. The experimental results for a dataset
that contains 800k points with 7 dimensions show considerable
speedup.

Keywords— Skyline computation; Manhattan distance; Multi-
core processors

I. INTRODUCTION

The Skyline query is a useful operator in many data-
intensive applications such as product or restaurant
recommendations [1], route planning for road networks [2],
graph analysis network [3] and data exploration [4]. For a
simple dataset with just one dimension, the Skyline operation is
equivalent to Maximum or Minimum operation. However, in a
dataset with two or more dimensions, to find the best records
with specific criteria, the impact of all dimensions should be
considered. Selecting a hotel for a holiday, based on two
parameters of cost and distance to the beach, is a classic
example that used for explaining the Skyline operator. To
choose the most suitable hotels (to be both cheap and close to
the beach), the Skyline operator provides the best cases for
trade-off in price and distance to the beach. For example, in
Figure1, the hotel with tag “A” is more appropriate than the
hotel with tag “B”, since it is not only closer to the beach, but
also it is cheaper than “B”, in this case, said “A dominates B”.
In contrast, the hotel with tag “C” and all other points on the
black line in Figure 1 (i.e. Skyline points) present the
alternatives with lower cost, however, more distance to the
beach. In this example, just two parameters are considered and
the dataset contains two dimensions (� = 2, in this paper, the
number of dimensions in a dataset is shown with �). However,
more dimensions must be added to the dataset, if a vacationer
wants to ponder about other aspects of the hotel (e.g., the
hotel's service quality).

Fig. 1. The Skyline of hotels with two parameters [5]

In the aforementioned example, the dataset is static which
means no data point will be added or removed over time.
However, real datasets are very large and dynamic which are
frequently changed over time. Finding the Skyline points for
these types of datasets is called “continuous” or “continuous
time-interval” Skyline computation.

The subject of MEMOCODE 2015 Design Contest
challenge is to find the best approach (pure-performance or
cost-adjusted-performance) for computing the Skyline of a
multi-dimensional dynamic dataset. Based on the contest
problem definition, the dataset � consisting of � elements
��, ��, … , ����, each with � dimensions, that � = 800� and
� = 7. Elements in � can be represented as a 16-bit unsigned
value. In addition, the time is modeled as a series of discrete
time-steps and the dataset's changes are shown with activation
time � and deactivation time �. Participants must find the
Skyline, for each time-step �, among all data in � that have
activation time � ≤ � and deactivation time � > �. The output
of should contain the indices (in �) of the Skyline elements and
the number of Skyline entries found per time-step.

In this contest, we chose multi-core CPU over GPU and
FPGA. The data transfer between CPU and GPU is too high
compared to the total running time of the algorithm on a multi-
core system (it needs about 6 seconds for a copy from memory
to GPU). Also, for FPGA, not only it has data transfer
limitations, but also, it is hard to place the whole design on the
FPGA hardware.

The rest of this paper is organized as follows: in Section II
the previous works on designed implementation of Skyline
computation are reviewed. We present our proposed methods
in Section III and the experimental results are presented in
Section IV. Finally, Section V contains our concluding
remarks.

* S. Gorgin is also affiliated with Iranian Research Organization for Science
and Technology (IROST), Tehran, Iran.

II. RELATED WORKS

The Skyline computation idea was first introduced in [6],
which uses a divided-and-conquer approach. The first parallel
implementation and high dimensional Skyline computation was
proposed in [7] and [8], respectively.

In 2001, Borzsonyi et al. [9] introduced Skyline operator to
database community that attracted significant research
attention. They probed the impact of the standard indexing
structures like B-tree and R-tree for computing Skyline queries.

Recently, many algorithms are presented to get the Skyline
points, as mentioned in the previous section they can be
categorized in two separate groups of static and dynamic or
continuous. The static algorithms implemented in high
performance platforms such as multi-core CPU [10], many
core GPU and FPGA. There are different approaches for
Skyline algorithm, which the simplest one was discussed in [9].
This approach, named block nested loop, explores all data
points and computes Skyline to find non-dominated points. The
GPU-based implementation of this method was proposed in
[11], named GNL (GPU-based nested loop). Obviously,
searching a large dataset consumes a huge amount of
computing power. Therefore, many fast algorithms were
introduced in order to decrease the computation time and
complexity. One of the algorithms for this problem is
Hashcube [12]. Also, Lattice and Skycube are data structures
that used in [13], to manage complexity. For better access to
memory in multi-core processors, the hybrid algorithm are
presented that flattens tree structure into an array [14] [15]. A
sorting based data-parallel Skyline algorithm was introduced
that exploits the computational power of the GPU[16]. Bøgh
et.al introduced a non-recursive partition-based algorithm
which called SkyAlign [17]. Also, a hardware implementation
of the Skyline algorithm on FPGA was introduced to allow
multiple operations to be executed on the same working set in
parallel [18].

On the other hand, Lin et al. [19] concentrate on
continuous Skyline computation which incorporates a heap to
remove elements that have slipped outside the sliding window.
The sliding window involves data points which their arrival
and expiration times are valid for a specific interval time.
Morse et al. [20] improve approach of [19] and present an
efficient and scalable algorithm for evaluating Skyline queries,
called LookOut. The LookOut algorithm takes advantage of the
quad-tree index since it is much more efficient index structure
for evaluation. Also, the non-overlapping partitioning feature
of quad-tree causes a natural decomposition of space that can
more effectively prune the index nodes that must be searched.

III. PROPOSED METHODS

In this section, we present our techniques that reduce the
running time of the continuous Skyline computation. Profiling
reference implementation shows computing comparison
between points is the bottleneck of the algorithm. It is needed a
huge amount of computation and memory access. These
computations include four nested loops with the time
complexity of �(����) where �, �, and � are the number of
dimensions, the number of time steps, and the number of
points, respectively. Another challenge in this problem is

memory access that can be relieved by optimizing memory
usage. Therefore, by reducing the number of effective points
and parallelization, the time complexity can be reduced. We
describe our proposed techniques in the following sections.

A. Initialization step

The given dataset is sorted based on arriving time; we sort
this dataset base on expiration time by quick sort algorithm.
For working on data sets, we use the Set template class which
is provided by the Standard Template Library (STL). This class
is typically implemented via a Red-black tree. The Red-black
tree does not have data race problem and can be used for sorted
data with �(� log �) complexity.

We use sets of sorted points on arrival and expiration time
for optimal detecting of changes of active points. In each time
step, by traversing on the sorted arrays, the points that should
be added (removed) to (from) the current set of active points
are detected. It should mention that it has a linear complexity
since each element of arrays has just one access. The
Algorithm 1 shows the pseudo code of above mentioned
procedure to obtain Skyline points. The details of
“Update_Skyline” function are explained in following section.

Algorithm 1: Skyline Computation
1: �������� = 0, ����������� = 0;

2: FOR (� = �����_���� TO ���_����) DO

3: While (Arrival_time [Arrival[��������]] <= �){

4: �������_�����_����. ���(�������[��������]);

5: �������� + + ; }

6: While (����������_���� [����������[�����������]] <= �) {

7: ����������_����_����. ���(����������[�����������])

8: ����������� + +; }

9: Update_Skyline(�������_�������_����, ����������_����_����);
10: END DO;
11: RETURN;

B. Updating Skyline method

Let � represent a set of Skyline points which are subsets of
� (� ⊆ �). Also, we symbolize “� dominate �” by � ≺ �. The
“Update_Skyline” function has two main parts, adding and
removing procedures, which are described in below:

1) Adding procedure
In a naïve implementation, for adding a new Point � to

Skyline, it should be examined with all of � points.

� �� ��� ������� ����� ⇔ ∄� ∈ � (� ≺ �) (1)

� �� ��� ��� ������� ����� ⇔ ∃� ∈ � (� ≺ �) (2)

Using the above propositions is inefficient because it needs
to check all points of dataset. Hence, to reduced search space,
we can use following propositions.

� ⊆ � ⟹ ∃� ∈ � (� ≺ �) ⇔ ∃� ∈ � (� ≺ �) ⟹

∃� ∈ � (� ≺ �) ⇔ � �� ��� ��� ������� �����

On the other hand, point � is a Skyline point when it not
dominated by any point in Skyline.

∀� ∈ � ((� ∈ �) ∨ (� ∉ �))
���� �� ��.�
����������

∀� ∈ � (� ∈ �) ∨ �∃� ∈ � (� ≺ �)� ⟹

(� ≺ �) ⇔ �(� ∈ �) ∨ �∃� ∈ � (� ≺ �)�� ∧ (� ≺ �) ⟹

(� ≺ �) ⇔ ��� ∈ � ∧ (� ≺ �)� ∨ �∃� ∈ � (� ≺ �) ∧ (� ≺ �)��

Based on transitive property, we can write:

(� ≺ �) ⇔ �(∃� ∈ � (� ≺ �)) ∨ �∃� ∈ � (� ≺ �)�� ⟹

(� ≺ �) ⇔ ∃� ∈ � (� ≺ �) ⟹

∃� ∈ � (� ≺ �) ⇔ ∃� ∈ � (� ≺ �)
��������
�������

∄� ∈ � (� ≺ �) ⇔ ∄� ∈ � (� ≺ �) ⟹

∄� ∈ � (� ≺ �) ⇔ � �� ��� ������� �����

This method helps us to decrease search space from all
dataset � points to quite smaller one (just Skyline � points).

2) Removing procedures
For removing a point, two different situations are occurred.

First, point � is not a member of �; so it can be easily removed
without any effect. Second, point � is a member of Skyline set.
In this situation, the Skyline set may change since the
dominated points by the recent removed point find the chance
of being a new Skyline member. We use sorted data based on
Manhattan distance to reduce the search space.

According to definition of “dominate” function the element
� dominates element � when:

 � ≠ �

 �[�] ≤ �[�] for � = 0 to � − 1 (in � dimensions)

Therefore, based on Manhattan distance:

� �������� �
��
⇒ � �[�] < � �[�]

���

�

���

�

And obviously:

� �[�] ≥ � �[�]

���

�

���

�

 ⇒ � ���� ��� �������� �

Regarding the above equations, the dominated points by �,
have greater Manhattan distance than � and the point which
dominates P, have smaller Manhattan distance than P. Thus, by
sorting the points based on their Manhattan distance, we can
find the pruning boundary points by a logarithmic search and
start tracing from this points. For more clarification, we
represent this subject as an example in a two dimension dataset
in Fig. 2. Based on Manhattan distance the points which are
placed in the triangle area are pruned. In addition, by removing
the point � from the Skyline, the candidate points for being
new Skyline member are just placed in the rectangle area of
Fig. 2 and the other points are pruned. By using this pruning,
we need check only some points which are placed next to the
point � in our data structure.

We can summarize above explanation to make a candidate
set in below propositions.

candidate = {� ∈ � |� ≺ �}

���� = � ∪ {� ∈ ��������� | ∄� ∈ � (� ≺ �)}

P

y

� + � = �

�

Fig. 2. Using Manhattan distance for pruning points.

C. Parallel implementation details

Multi-core platforms can help to achieve a lower running
time for continuous Skyline computation. We study
optimization techniques related to the distribution of
computation over multi-core processors. We investigate the
effect of different load-balancing strategies. In our suggested
implementation, the workloads are divided among the cores;
when the computation of one core is finished, it takes a block
of the other remaining tasks. Therefore, an efficient load
balancing is provided. In addition, according to the number of
available cores, we parallelize suggested approach over time-
step, with sufficient overlap and two different solutions are
proposed two handling the overlaps.

1- Static solution: In this solution, the overlap value is fixed.

2- Dynamic solution: In this solution, the overlap value is
computed based on dataset elements.

In our implementation, the most widely used function is
“dominate” that return a Boolean value based on status of two
points, by considering all dimensions. To improve running time
of this function, we add a mask bit to the most significant
position of each dimension value, and represent all dimension
value beside the mask bits in a 128-bit vector. After that
instead of the comparison operator for each dimension, we can
subtract two points’ vectored data. The subtraction result in
mask bits position is used to define the dominate function
result. To simplify implementation, we used two 64-bit
operators instead of a 128-bit operator. These optimization
techniques have an important effect on performance, especially
on parallel implementation since data locality is increased.

IV. EXPERIMENTAL RESULT

In this section, we first overview our hardware platforms
and then present our experimental results on these platforms.
We implemented our algorithm on multi-core systems. Here is
the list of our multi-core platforms.

 Intel Core i5, 2410M with two cores @ 2.30GHz.
 Intel Core i7, 3540M with two cores @ 3.00GHz.
 Intel Core i7, 960 with four cores @ 3.20GHz.
 Intel Xeon x5650 with six cores @ 2.66GHz.
 Intel Xeon E5-2650 with ten cores @ 2.00GHZ.
 AMD Opteron 6386 SE with sixteen cores @ 2.80GHz

We took advantage of multi-core platforms via OpenMP
programming model. To gain better efficiency, we used Intel
compiler and OpenMP4.4.

The platforms, execution time, prices, and performance ×
cost on each platform for the large dataset with 8,00� element
that each element has 7 dimensions (� = 8,00�, � = 7) are
shown in Table I. The 2.66 GHz Intel X5650 is the best in
performance × cost, while the best performance is provided by
the 2.80GHz AMD Opteron 6386 SE processor.

TABLE I. EXECUTION TIME, PRICES, AND PERFORMANCE×COST
FOR EACH PLATFORM

Platform
Time
(sec)

Cost in
stock ($)

Performance×cost

Intel Corei5-2410M 22 28 616
Intel Corei7-3540M 15 150 2250

Intel Corei7-960 7.8 90 702
Intel Xeon X5650 3.5 81 283.5

Intel Xeon E5-2650 2.5 700 1750
AMD Opteron 6386 SE 1.4 791.11 1107.5

Table II shows execution time of naïve implementation on
the 3.00GHz Intel Corei7-960 processor. In addition, the static
and dynamic solutions (See Section III, part C) are compared
that their difference is negligible.

TABLE II. EXECUTION TIME OF STATIC AND DYNAMIC SOLUTION
FOR EACH PLATFORM

Design Platforms
Time

Dynamic
(Sec)

Time
Static
(Sec)

Naive Corei7-960 604800 604800

Proposed
Solution

Corei5-2410M 23.1 22.0
Corei7-960 8.6 7.8
Xeon 5650 3.9 3.5
Xeon 2650 3.1 2.5

AMD Opteron 6386 SE 1.9 1.4

V. CONCLUSION

In this paper, we presented a parallel algorithm for Skyline
computation with the dynamic dataset. In our proposed
method, instead of examining all dataset points for updating
Skyline, in add cases just the Skyline points are considered and
in remove cases, by using an effective pruning algorithm, a
limited subset of dataset is checked. We used the Set template
class from the STL that provides several facilities for
add/delete operation since it keeps the dataset sorted based on
Manhattan distance. Moreover, we utilized the SIMD feature of
processors by loop unrolling and bitwise operations for
comparing two points. For more parallelization, we partitioned
the time steps based on the number of available cores, with
dynamic and static overlaps. Finally, we tested our proposed
method on six different multi-core platforms. The experimental
results are shown significant speedup.

REFERENCES

[1] T. Lappas and D. Gunopulos, "Efficient Confident Search in
Large Review Corpora," in Machine Learning and Knowledge
Discovery in Databases. vol. 6322, pp. 195-210, 2010.

[2] H. P. Kriegel, M. Renz, and M. Schubert, "Route Skyline
queries: A multi-preference path planning approach," in the
Proc. of 26th International Conference on Data Engineering
(ICDE), pp. 261-272, 2010.

[3] L. Zou, L. Chen, M. T. Özsu, and D. Zhao, "Dynamic Skyline
Queries in Large Graphs," in Database Systems for Advanced
Applications. vol. 5982, pp. 62-78, 2010.

[4] S. Chester, M. L. Mortensen, and I. Assent, "On the suitability
of Skyline queries for data exploration," in the Proc. of 1st
International Workshop on Exploratory Search in Databases
and the Web, pp. 161-166, 2014.

[5] P. Milder. (2015). MEMOCODE 2015 Design Contest:
Continuous Skyline Computation. Available:
 http://www.ece.stonybrook.edu/~pmilder/memocode/

[6] H. T. Kung, F. Luccio, and F. P. Preparata, "On Finding the
Maxima of a Set of Vectors," J. ACM, vol. 22, pp. 469-476,
1975.

[7] I. Stojmenović and M. Miyakawa, "An optimal parallel
algorithm for solving the maximal elements problem in the
plane," Parallel Computing, vol. 7, pp. 249-251, 1988.

[8] J. Matoušek, "Computing dominances in En ," Journal
Information Processing Letters, vol. 38, pp. 277-278,
1991.

[9] S. Borzsony, D. Kossmann, and K. Stocker, "The Skyline
operator," in the Proc. of 17th International Conference on Data
Engineering, pp. 421-430, 2001.

[10] S. Liknes, A. Vlachou, C. Doulkeridis, and K. Nørvåg,
"APSkyline: Improved Skyline Computation for Multicore
Architectures," Database Systems for Advanced Applications
Lecture Notes in Computer Science, vol. 8421, pp 312-326,
2014.

[11] C. Wonik, L. Ling, and Y. Boseon, "Multi-criteria decision
making with Skyline computation," in the Proc. of 13th
International Conference on Information Reuse and Integration
(IRI), pp. 316-323, 2012.

[12] K. S. B, S. Chester, Darius, idlauskas, and I. Assent,
"Hashcube: A Data Structure for Space- and Query-Efficient
Skycube Compression," in the Proc. of 23rd ACM International
Conference on Conference on Information and Knowledge
Management, 2014.

[13] J. Lee and S.-W. Hwang, "Toward efficient multidimensional
subspace Skyline computation," The VLDB Journal, vol. 23,
pp. 129-145, 2014.

[14] H. Im, J. Park, and S. Park, "Parallel Skyline computation on
multicore architectures," Information Systems, vol. 36, pp. 808-
823, 2011.

[15] S. Chester, D. Sidlauskas, I. Assent, and K. S. Bogh, "Scalable
parallelization of Skyline computation for multi-core
processors," in the Proc. 31st International Conference on,
Data Engineering (ICDE), pp. 1083-1094, 2015.

[16] K. S. B, I. Assent, and M. Magnani, "Efficient GPU-based
Skyline computation," in the Proc. of the 9th International
Workshop on Data Management on New Hardware, 2013.

[17] K. S. B, S. Chester, and I. Assent, "Work-efficient parallel
Skyline computation for the GPU," in the Proc. of VLDB
Endow., vol. 8, pp. 962-973, 2015.

[18] L. Woods, G. Alonso, and J. Teubner, "Parallel Computation of
Skyline Queries," in the Proc. of 21st Annual International
Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 1-8, 2013.

[19] L. Xuemin, Y. Yidong, W. Wei, and L. Hongjun, "Stabbing the
sky: efficient Skyline computation over sliding windows," in
the Proc. of 21st International Conference on Data
Engineering, pp. 502-513, 2005.

[20] M. Morse, J. M. Patel, and W. I. Grosky, "Efficient continuous
Skyline computation," Information Sciences, vol. 177, pp.
3411-3437, 2007.

