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Abstract— The continuous Skyline query has recently become 

the subject of the several researches due to its wide spectrum of 
applications such as multi-criteria decision making, graph 
analysis network, wireless sensor network and data exploration. 
In these applications, the datasets are huge and have various 
dimensions. Moreover, they constantly change as time passes. 
Therefore, this query is considered as a computation intensive 
operation that finding the result in a reasonable time is a 
challenge. In this paper, we present an efficient parallel 
continuous Skyline approach. In our suggested method, the 
dataset points are sorted and pruned based on Manhattan 
distance. Moreover, we use several optimization methods to 
optimize memory usage in comparison with naïve 
implementation. In addition, besides the applied conventional 
parallelization methods, we partition the time steps based on the 
number of available cores. The experimental results for a dataset 
that contains 800k points with 7 dimensions show considerable 
speedup.  

Keywords— Skyline computation; Manhattan distance; Multi-
core processors 

I.  INTRODUCTION 

The Skyline query is a useful operator in many data-
intensive applications such as product or restaurant 
recommendations [1], route planning for road networks [2], 
graph analysis network [3] and data exploration [4]. For a 
simple dataset with just one dimension, the Skyline operation is 
equivalent to Maximum or Minimum operation. However, in a 
dataset with two or more dimensions, to find the best records 
with specific criteria, the impact of all dimensions should be 
considered. Selecting a hotel for a holiday, based on two 
parameters of cost and distance to the beach, is a classic 
example that used for explaining the Skyline operator. To 
choose the most suitable hotels (to be both cheap and close to 
the beach), the Skyline operator provides the best cases for 
trade-off in price and distance to the beach. For example, in 
Figure1, the hotel with tag “A” is more appropriate than the 
hotel with tag “B”, since it is not only closer to the beach, but 
also it is cheaper than “B”, in this case, said “A dominates B”. 
In contrast, the hotel with tag “C” and all other points on the 
black line in Figure 1 (i.e. Skyline points) present the 
alternatives with lower cost, however, more distance to the 
beach. In this example, just two parameters are considered and 
the dataset contains two dimensions (� = 2, in this paper, the 
number of dimensions in a dataset is shown with �). However, 
more dimensions must be added to the dataset, if a vacationer 
wants to ponder about other aspects of the hotel (e.g., the 
hotel's service quality).  

 
Fig. 1. The Skyline of hotels with two parameters [5] 

In the aforementioned example, the dataset is static which 
means no data point will be added or removed over time. 
However, real datasets are very large and dynamic which are 
frequently changed over time. Finding the Skyline points for 
these types of datasets is called “continuous” or “continuous 
time-interval” Skyline computation. 

The subject of MEMOCODE 2015 Design Contest 
challenge is to find the best approach (pure-performance or 
cost-adjusted-performance) for computing the Skyline of a 
multi-dimensional dynamic dataset. Based on the contest 
problem definition, the dataset � consisting of � elements 
��, ��, … , ����, each with � dimensions, that � = 800� and 
� = 7.  Elements in � can be represented as a 16-bit unsigned 
value. In addition, the time is modeled as a series of discrete 
time-steps and the dataset's changes are shown with activation 
time � and deactivation time �. Participants must find the 
Skyline, for each time-step �, among all data in � that have 
activation time � ≤ � and deactivation time � > �. The output 
of should contain the indices (in �) of the Skyline elements and 
the number of Skyline entries found per time-step.  

In this contest, we chose multi-core CPU over GPU and 
FPGA. The data transfer between CPU and GPU is too high 
compared to the total running time of the algorithm on a multi-
core system (it needs about 6 seconds for a copy from memory 
to GPU). Also, for FPGA, not only it has data transfer 
limitations, but also, it is hard to place the whole design on the 
FPGA hardware.  

The rest of this paper is organized as follows: in Section II 
the previous works on designed implementation of Skyline 
computation are reviewed. We present our proposed methods 
in Section III and the experimental results are presented in 
Section IV. Finally, Section V contains our concluding 
remarks. 
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II. RELATED WORKS 

The Skyline computation idea was first introduced in [6], 
which uses a divided-and-conquer approach. The first parallel 
implementation and high dimensional Skyline computation was 
proposed in [7] and [8], respectively.  

In 2001, Borzsonyi et al. [9] introduced Skyline operator to 
database community that attracted significant research 
attention. They probed the impact of the standard indexing 
structures like B-tree and R-tree for computing Skyline queries.  

Recently, many algorithms are presented to get the Skyline 
points, as mentioned in the previous section they can be 
categorized in two separate groups of static and dynamic or 
continuous. The static algorithms implemented in high 
performance platforms such as multi-core CPU [10], many 
core GPU and FPGA. There are different approaches for 
Skyline algorithm, which the simplest one was discussed in [9]. 
This approach, named block nested loop, explores all data 
points and computes Skyline to find non-dominated points. The 
GPU-based implementation of this method was proposed in 
[11], named GNL (GPU-based nested loop). Obviously, 
searching a large dataset consumes a huge amount of 
computing power. Therefore, many fast algorithms were 
introduced in order to decrease the computation time and 
complexity. One of the algorithms for this problem is 
Hashcube [12]. Also, Lattice and Skycube are data structures 
that used in [13], to manage complexity. For better access to 
memory in multi-core processors, the hybrid algorithm are 
presented that flattens tree structure into an array [14] [15]. A 
sorting based data-parallel Skyline algorithm was introduced 
that exploits the computational power of the GPU[16]. Bøgh 
et.al introduced a non-recursive partition-based algorithm 
which called SkyAlign [17]. Also, a hardware implementation 
of the Skyline algorithm on FPGA was introduced to allow 
multiple operations to be executed on the same working set in 
parallel [18]. 

On the other hand, Lin et al.  [19] concentrate on 
continuous Skyline computation which incorporates a heap to 
remove elements that have slipped outside the sliding window. 
The sliding window involves data points which their arrival 
and expiration times are valid for a specific interval time. 
Morse et al. [20] improve approach of [19]  and present an 
efficient and scalable algorithm for evaluating Skyline queries, 
called LookOut. The LookOut algorithm takes advantage of the 
quad-tree index since it is much more efficient index structure 
for evaluation. Also, the non-overlapping partitioning feature 
of quad-tree causes a natural decomposition of space that can 
more effectively prune the index nodes that must be searched. 

III. PROPOSED METHODS 

In this section, we present our techniques that reduce the 
running time of the continuous Skyline computation. Profiling 
reference implementation shows computing comparison 
between points is the bottleneck of the algorithm. It is needed a 
huge amount of computation and memory access. These 
computations include four nested loops with the time 
complexity of �(����) where �, �, and � are the number of 
dimensions, the number of time steps, and the number of 
points, respectively. Another challenge in this problem is 

memory access that can be relieved by optimizing memory 
usage. Therefore, by reducing the number of effective points 
and parallelization, the time complexity can be reduced. We 
describe our proposed techniques in the following sections. 

A. Initialization step 

The given dataset is sorted based on arriving time; we sort 
this dataset base on expiration time by quick sort algorithm. 
For working on data sets, we use the Set template class which 
is provided by the Standard Template Library (STL). This class 
is typically implemented via a Red-black tree. The Red-black 
tree does not have data race problem and can be used for sorted 
data with �(� log �) complexity.  

We use sets of sorted points on arrival and expiration time 
for optimal detecting of changes of active points. In each time 
step, by traversing on the sorted arrays, the points that should 
be added (removed) to (from) the current set of active points 
are detected. It should mention that it has a linear complexity 
since each element of arrays has just one access. The 
Algorithm 1 shows the pseudo code of above mentioned 
procedure to obtain Skyline points. The details of 
“Update_Skyline” function are explained in following section. 

Algorithm 1: Skyline Computation  
1: �������� = 0, ����������� =  0; 

2: FOR (� =  �����_���� TO ���_����)  DO 

3: While ( Arrival_time [Arrival[��������]] <= �){ 

4:                    �������_�����_����. ���(�������[��������]); 

5:  �������� + + ; } 

6: While (����������_���� [����������[�����������]]  <=  �) { 

7:         ����������_����_����. ���(����������[�����������]) 

8: ����������� + +; } 

9: Update_Skyline(�������_�������_����, ����������_����_����); 
10: END DO; 
11: RETURN; 

B. Updating Skyline method 

Let � represent a set of Skyline points which are subsets of 
� (� ⊆ �). Also, we symbolize “� dominate �” by  � ≺ �. The 
“Update_Skyline” function has two main parts, adding and 
removing procedures, which are described in below:  

1) Adding procedure 
In a naïve implementation, for adding a new Point �  to 

Skyline, it should be examined with all of � points.  

� �� ��� ������� ����� ⇔ ∄� ∈ � (� ≺ �)  (1) 

� �� ��� ��� ������� ����� ⇔ ∃� ∈ � (� ≺ �)   (2) 

Using the above propositions is inefficient because it needs 
to check all points of dataset. Hence, to reduced search space, 
we can use following propositions. 

� ⊆ � ⟹  ∃� ∈ � (� ≺ �) ⇔  ∃� ∈ � (� ≺ �)  ⟹  

∃� ∈ � (� ≺ �) ⇔  � �� ��� ��� ������� ����� 

On the other hand, point � is a Skyline point when it not 
dominated by any point in Skyline.  

∀� ∈ � ((� ∈ �)  ∨ (� ∉ �)) 
���� �� ��.� 
����������   

∀� ∈ �  (� ∈ �) ∨ �∃� ∈ � (� ≺ �)� ⟹ 



(� ≺ �) ⇔ �(� ∈ �) ∨ �∃� ∈ � (� ≺ �)��  ∧  (� ≺ �) ⟹ 

(� ≺ �) ⇔ ��� ∈ � ∧  (� ≺ �)� ∨ �∃� ∈ � (� ≺ �)  ∧ (� ≺ �)�� 

Based on transitive property, we can write:   

(� ≺ �) ⇔ �(∃� ∈ �  (� ≺ �)) ∨ �∃� ∈ � (� ≺ �)��  ⟹ 

(� ≺ �) ⇔ ∃� ∈ � (� ≺ �) ⟹ 

∃� ∈ �  (� ≺ �) ⇔  ∃� ∈ �  (� ≺ �)
��������
������� 

∄� ∈ �  (� ≺ �) ⇔  ∄� ∈ �  (� ≺ �) ⟹ 

∄� ∈ �  (� ≺ �) ⇔  � �� ��� ������� ����� 

This method helps us to decrease search space from all 
dataset � points to quite smaller one (just Skyline � points).  

2) Removing procedures 
For removing a point, two different situations are occurred. 

First, point � is not a member of �; so it can be easily removed  
without any effect. Second, point � is a member of Skyline set. 
In this situation, the Skyline set may change since the 
dominated points by the recent removed point find the chance 
of being a new Skyline member. We use sorted data based on 
Manhattan distance to reduce the search space.   

According to definition of “dominate” function the element 
� dominates element � when: 

 � ≠ � 

 �[�] ≤ �[�] for � = 0 to � − 1 (in � dimensions) 

Therefore, based on Manhattan distance: 

� �������� � 
��
⇒ � �[�] < � �[�]

���

�

���

�

 

And obviously: 

� �[�] ≥ � �[�]

���

�

���

�

 ⇒ � ���� ��� �������� � 

Regarding the above equations, the dominated points by �, 
have greater Manhattan distance than � and the point which 
dominates P, have smaller Manhattan distance than P. Thus, by 
sorting the points based on their Manhattan distance, we can 
find the pruning boundary points by a logarithmic search and 
start tracing from this points. For more clarification, we 
represent this subject as an example in a two dimension dataset 
in Fig. 2. Based on Manhattan distance the points which are 
placed in the triangle area are pruned. In addition, by removing 
the point � from the Skyline, the candidate points for being 
new Skyline member are just placed in the rectangle area of 
Fig. 2 and the other points are pruned. By using this pruning, 
we need check only some points which are placed next to the 
point � in our data structure. 

We can summarize above explanation to make a candidate 
set in below propositions. 

candidate = {� ∈ � |� ≺ �} 

���� = � ∪ {� ∈ ��������� | ∄� ∈ � (� ≺ �)} 

P

y

� + � = � 

� 

 
Fig. 2. Using Manhattan distance for pruning points. 

C. Parallel implementation details 

Multi-core platforms can help to achieve a lower running 
time for continuous Skyline computation. We study 
optimization techniques related to the distribution of 
computation over multi-core processors. We investigate the 
effect of different load-balancing strategies. In our suggested 
implementation, the workloads are divided among the cores; 
when the computation of one core is finished, it takes a block 
of the other remaining tasks. Therefore, an efficient load 
balancing is provided. In addition, according to the number of 
available cores, we parallelize suggested approach over time-
step, with sufficient overlap and two different solutions are 
proposed two handling the overlaps.  

1- Static solution: In this solution, the overlap value is fixed. 

2- Dynamic solution: In this solution, the overlap value is 
computed based on dataset elements. 

In our implementation, the most widely used function is 
“dominate” that return a Boolean value based on status of two 
points, by considering all dimensions. To improve running time 
of this function, we add a mask bit to the most significant 
position of each dimension value, and represent all dimension 
value beside the mask bits in a 128-bit vector. After that 
instead of the comparison operator for each dimension, we can 
subtract two points’ vectored data. The subtraction result in 
mask bits position is used to define the dominate function 
result. To simplify implementation, we used two 64-bit 
operators instead of a 128-bit operator. These optimization 
techniques have an important effect on performance, especially 
on parallel implementation since data locality is increased. 

IV. EXPERIMENTAL RESULT  

In this section, we first overview our hardware platforms 
and then present our experimental results on these platforms. 
We implemented our algorithm on multi-core systems. Here is 
the list of our multi-core platforms. 

 Intel Core i5, 2410M with two cores @ 2.30GHz. 
 Intel Core i7, 3540M with two cores @ 3.00GHz. 
 Intel Core i7, 960 with four cores @ 3.20GHz. 
 Intel Xeon x5650 with six cores @ 2.66GHz. 
 Intel Xeon E5-2650 with ten cores @ 2.00GHZ. 
 AMD Opteron 6386 SE with sixteen cores @ 2.80GHz 

We took advantage of multi-core platforms via OpenMP 
programming model. To gain better efficiency, we used Intel 
compiler and OpenMP4.4.  



The platforms, execution time, prices, and performance × 
cost on each platform for the large dataset with 8,00� element 
that each element has 7 dimensions (� = 8,00�, � = 7) are 
shown in Table I. The 2.66 GHz Intel X5650 is the best in 
performance × cost, while the best performance is provided by 
the 2.80GHz AMD Opteron 6386 SE processor. 

TABLE I.  EXECUTION TIME, PRICES, AND PERFORMANCE×COST  
FOR EACH PLATFORM 

Platform 
Time 
(sec) 

Cost in 
stock ($) 

Performance×cost 

Intel Corei5-2410M 22 28 616 
Intel Corei7-3540M 15 150 2250 

Intel Corei7-960 7.8 90 702 
Intel Xeon X5650 3.5 81 283.5 

Intel Xeon E5-2650 2.5 700 1750 
AMD Opteron 6386 SE 1.4 791.11 1107.5 

 

Table II shows execution time of naïve implementation on 
the 3.00GHz Intel Corei7-960 processor. In addition, the static 
and dynamic solutions (See Section III, part C) are compared 
that their difference is negligible.  

TABLE II.  EXECUTION TIME OF STATIC AND DYNAMIC SOLUTION  
FOR EACH PLATFORM 

Design Platforms 
Time 

Dynamic 
(Sec) 

Time 
Static 
(Sec) 

Naive Corei7-960 604800 604800 

Proposed 
Solution 

Corei5-2410M 23.1 22.0 
Corei7-960 8.6 7.8 
Xeon 5650 3.9 3.5 
Xeon 2650 3.1 2.5 

AMD Opteron 6386 SE 1.9 1.4 

V. CONCLUSION 

In this paper, we presented a parallel algorithm for Skyline 
computation with the dynamic dataset. In our proposed 
method, instead of examining all dataset points for updating 
Skyline, in add cases just the Skyline points are considered and 
in remove cases, by using an effective pruning algorithm, a 
limited subset of dataset is checked. We used the Set template 
class from the STL that provides several facilities for 
add/delete operation since it keeps the dataset sorted based on 
Manhattan distance. Moreover, we utilized the SIMD feature of 
processors by loop unrolling and bitwise operations for 
comparing two points. For more parallelization, we partitioned 
the time steps based on the number of available cores, with 
dynamic and static overlaps. Finally, we tested our proposed 
method on six different multi-core platforms. The experimental 
results are shown significant speedup. 
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